II Semester B.Sc. Examination, September 2020 (CBCS) (F + R) (2014-15 and Onwards) CHEMISTRY - II

Time: 3 Hours

Max. Marks: 70

- Instructions: i) The question paper has two Parts. Answer both the Parts.
 - ii) Write equation, draw diagrams wherever necessary.

PART - A

I. Answer any eight of the following questions.

 $(8 \times 2 = 16)$

- 1) Write de-Broglie's equation. Explain the terms.
- 2) State Heisenberg's uncertainity principle.
- 3) Write the values of all the four quantum numbers for 2S' electron.
- 4) Na is highly reactive but not Na+. Explain.
- 5) Write Born-Lande equation for the calculation of lattice energy and indicate the terms involved.
- 6) Explain intermolecular hydrogen bonding with an example.
- 7) Write the general electronic configuration of poble gases.
- 8) Calculate the Magnetic moment of Fe in ferrous sulphate (Atomic number of iron = 26).
- 9) Why "f" block elements are called inner transition elements?
- 10) Classify the following into ortho, para and meta orienting groups NO₂, – CI, – CH₃, – OH.
- 11) Give an example of Diels Alder reaction.
- 12) Arrange in the increasing order of reactivity of the following. Ethyl chloride, Isopropyl chloride, Benzyl chloride and chlorobenzene.

PART - B

II. Answer **any nine** of the following questions.

 $(9 \times 6 = 54)$

- 13) a) Give the postulates of quantum mechanics.
 - b) Write any two limitations of Bohr's theory of atomic structure.

(4+2)

- 14) a) Explain the significance of the terms (i) Hamiltonian operator (ii) Eigen function.
 - b) Calculate the energy associated with Bohr's 3rd orbit. Given the energy of Bohr's 1st orbit is -2.17×10^{-18} J. (4+2)

P.T.O.

15)	•	Derive Schrodinger equation for particle in one dimensional box. What are radial probability and angular probability distribution? (4+2)	
16)	a)	Set-up Born-Haber cycle for the formation of NaCl. Write the expression for lattice energy using this cycle.	
	b)	Mention any two properties of ionic compounds. (4+2)	
17)	a)	Explain the shape of BrF ₃ molecule based on VSEPR theory.	
	b)	Calculate the bond order of carbon monoxide. (4+2)	
18)	a)	Explain the hybridization involved in the formation of BF ₃ .	
	b)	State Fajan's rule. (4+2)	
19)	a)	Give the preparation of XeF ₆ . Write its structure and mention any one property.	
	b)	Define Dipole moment. Write its SI unit. (4+2)	
20)	a)	What are Zeolites? Explain their molecular seve property and base exchanger property.	
	b)	Name the following and mention whether it is aromatic or antiaromatic. (4+2) Explain the characteristics of transition elements with respect to	
		Θ (4+2)	
21)	a)	Explain the characteristics of transition elements with respect to (i) formation of coloured compounds. (ii) Magnetic properties.	
	b)	What are the oxidation states of copper? In which oxidation state copper is more stable? (4+2)	
22)	a)	Explain the electronic configuration and oxidation states of lanthanides.	
,	b)	What is lanthanide contraction? Mention any one of its consequences. (4+2)	
23)	a)	Explain the structure of benzene based on molecular orbital theory.	
	b)	What happens when toluene is heated with alkaline Km _n O ₄ ? Give	
		equation. (4+2)	
24)	a)	With the help of resonance structures explain the orienting influence of $-CH_3$ group in toluene.	
	b)	Explain Birch reduction with an example. (4+2)	
25)	•	Explain the mechanism of hydrolysis of t-butyl bromide. State Saytzeff rule. Give an example. (4+2)	